RBI Grade-81
An Inorganic Soil Stabilizer and Pavement Material
A revolutionary inorganic, advanced soil stabiliser to construct highly durable, cost-effective and eco-friendly roads, highways and other pavements

The only comprehensive soil stabiliser that has a track record of success of over 20 years—all around the world.

The only soil stabilizer with a worldwide patent - *India Patent No.: 220094*

The only patented advanced soil stabilizer in the world that is certified by its country of origin - *The South African Beaureu of Standards as approved for road construction*

This approval has come after extensive testing by the Council of Scientific & Industrial Research (CSIR)

Only Internationally Patented Advanced Soil Stabiliser in the country being manufactured in India under the Honorable Prime Minister’s Make in India program
<table>
<thead>
<tr>
<th>Approvals & Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ministry of Road Transport & Highways</td>
</tr>
<tr>
<td>NRRDA</td>
</tr>
<tr>
<td>Military Engineering Services</td>
</tr>
<tr>
<td>Ministry of Environment, Forest & Climate Change</td>
</tr>
<tr>
<td>Indian Roads Congress</td>
</tr>
<tr>
<td>CRRI - Central Road Research Institute</td>
</tr>
<tr>
<td>In the SOR's of 8 States, with another 3 in process</td>
</tr>
<tr>
<td>PMGSY - Various States</td>
</tr>
<tr>
<td>Government of Assam - All planned roads to be made with RBI Grade-81</td>
</tr>
<tr>
<td>Indian Institute of Technology - Kharagpur, Roorkee and Madras</td>
</tr>
<tr>
<td>Indian Institute of Toxicology & Research, Lucknow</td>
</tr>
</tbody>
</table>
RBI Grade-81 in State SORs

RBI Grade-81 is already in the SORs of the following 8 States:

• Assam
• Karnataka
• Puducherry
• Arunachal Pradesh
• Uttarakhand
• Rajasthan
• Mizoram
• Jharkhand
• Madhya Pradesh
<table>
<thead>
<tr>
<th>International Certifications & Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Bank</td>
</tr>
<tr>
<td>World Road Association</td>
</tr>
<tr>
<td>South African Bureau of Standards</td>
</tr>
<tr>
<td>Council for Scientific & Industrial Research - South Africa</td>
</tr>
<tr>
<td>Ministry of Transport, Division & Infrastructure - Portugal</td>
</tr>
<tr>
<td>PA & CO International - Romania</td>
</tr>
<tr>
<td>Ministry of Road Building Materials - Ukraine</td>
</tr>
<tr>
<td>Al-Futtaim Tarmac - UAE</td>
</tr>
<tr>
<td>European Design Guidance for Road Pavement Foundation</td>
</tr>
</tbody>
</table>
Scientific Studies on RBI Grade-81

<table>
<thead>
<tr>
<th>Study Title</th>
<th>Journal/Memo/Other Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eco Friendly Road Technology: RBI Grade-81 Natural Soil Stabilizer & Pavement Material</td>
<td>MoEF, IIT Madras Chennai, 2016</td>
</tr>
<tr>
<td>Effect of Fly Ash and RBI Grade-81 on Black Cotton soil as a sub grade for Flexible Pavements</td>
<td>IJIET, 2014</td>
</tr>
<tr>
<td>Comparative Study of Black Cotton Soil Stabilization with RBI Grade-81</td>
<td>IJIRSET, 2013</td>
</tr>
<tr>
<td>Effect of Fly Ash and RBI Grade-81 on Swelling Characteristics of Clayey Soil</td>
<td>IJATCE, 2013</td>
</tr>
<tr>
<td>Effect of Industrial Waste & RBI Grade-81 on Swelling Characteristics of Clayey Soil</td>
<td>FACTA Universitatis, 2013</td>
</tr>
<tr>
<td>Toxicity Evaluation of the Soil Stabilizer RBI-81</td>
<td>CSIR, Cape Town, 2000</td>
</tr>
<tr>
<td>Standardised Testing of RBI Grade-81 as a Road Material Stabilizer</td>
<td>CSIR, 2004</td>
</tr>
<tr>
<td>Effect of Pond Ash and RBI Grade-81 on Properties of Subgrade Soil and Base Course of Flexible Pavement</td>
<td>World Academy of Science, Engineering & Technology, 2013</td>
</tr>
<tr>
<td>Title</td>
<td>Author/Institution</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Experimental Study on Strength Properties of Problematic Soils with RBI-81 Stabiliser;</td>
<td>IJCRE, 2014</td>
</tr>
<tr>
<td>Utilisation of Industrial Waste for Soil Stabilisation; International Conference on Advances in Architecture & Civil Engineering, 2012</td>
<td></td>
</tr>
<tr>
<td>Development & Promotion of Clean Technology and Waste Minimisation Techniques; Clean Technology Division, 2013</td>
<td></td>
</tr>
<tr>
<td>Effect of RBI-81 on Properties of Black Cotton Soil; IJRDET, 2014</td>
<td></td>
</tr>
<tr>
<td>Using RBI Grade-81 A Comparative Study of Black Cotton Soil and Lateritic Soil; IJRRET, 2014</td>
<td></td>
</tr>
<tr>
<td>Improvement of Subgrade by RBI Grade-81 & Fly Ash; IRJET, 2015</td>
<td></td>
</tr>
<tr>
<td>A Review Paper on Improvement on Subgrade by RBI Grade-81 & Fly Ash; IRJET, 2015</td>
<td></td>
</tr>
<tr>
<td>Improvement of Subgrade by RBI Grade-81 & Pond Ash; IRJET, 2015</td>
<td></td>
</tr>
<tr>
<td>Test Report RBI Grade-81 as Soil Stabilizer; SABS, 2007</td>
<td></td>
</tr>
</tbody>
</table>
Scientific Studies on RBI Grade-81 (cont.)

<table>
<thead>
<tr>
<th>Study</th>
<th>Journal/Institution</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory Performance of RBI 81 Stabilized Soil for Pavements</td>
<td>IJCER, 2014</td>
<td></td>
</tr>
<tr>
<td>Study on Stabilisation of Soil Using RBI Grade-81</td>
<td>IJRAE, 2015</td>
<td></td>
</tr>
<tr>
<td>Strengthening of Subgrade by Using RBI Grade-81 A Case Study</td>
<td>IOSR-JMCE, 2013</td>
<td></td>
</tr>
<tr>
<td>Chemical Stabilization of Black Cotton Soil for Sub-Grade Layer</td>
<td>IJSCER, 2014</td>
<td></td>
</tr>
<tr>
<td>Testing of RBI Grade-81 Filler</td>
<td>Institute for Transport Technology, University of Stellenbosch, 2005</td>
<td></td>
</tr>
<tr>
<td>Stabilization of Marginal Soil in New & Existing Right-of-Way</td>
<td>ALLU Group Inc., 2014</td>
<td></td>
</tr>
<tr>
<td>Study of Durability of Soil– RBI Grade 81 Mixtures for Application in Forest Roads and Convencional Pavement Layers</td>
<td>Federal University of Vicosa, Brazil, 2005</td>
<td></td>
</tr>
<tr>
<td>Study on Strength Characteristics of Soil Using Soil Stabilizer RBI-81</td>
<td>IRJET, 2014</td>
<td></td>
</tr>
<tr>
<td>Stabilization of Blast Furnace Slag & Fly Ash Using Lime & RBI Grade-81</td>
<td>NIT Rourkela, 2010</td>
<td></td>
</tr>
<tr>
<td>Effect of Soil Stabilizers on the Structural Design of Flexible Pavements</td>
<td>Thapan University, 2013</td>
<td></td>
</tr>
</tbody>
</table>
RBI Grade-81 Through the Ages

• RBI Grade-81 was developed by the South African Army in 1990s. It was extensively used to construct all manner of roads.

• RBI Grade-81 was bought by Mr Josy Cohen from the SA Government, and was further developed and optimized through continuous R&D.

• After 10 years of R&D South African patent was granted.

• It took a number of years to introduce soil stabilisers in India through numerous trials using RBI Grade-81.

• RBI Grade-81 is the pioneer of Soil Stabilisation in India.

• Road Building International (India) Pvt. Ltd. holds the exclusive license to manufacture and market RBI Grade-81 in India.
Properties & Benefits of RBI Grade-81
A Cost Effective, Rapid-Deployment, Environmentally Friendly Pavement Material

Construction cost reduction by 5% to 20%
Construction time reduction by 25% to 30%
Significant increase in Pavement Strength (CBR & UCS)
Transportation cost reduction by approx 30%
Enhanced Durability
Reduces Maintenance Cost
Surface becomes relatively impermeable
Properties & Benefits of RBI Grade-81
A Cost Effective, Rapid-Deployment, Environmentally Friendly Pavement Material

Saves construction material like Aggregate & Good Soil.

Reduces the use of bitumen.

Saves non-renewable resources in construction process.

Reduces Carbon Emission: resulting into carbon credits.

Only Soil Stabiliser to be certified as Non-Toxic.
Pavement Applications

RBI Grade-81 has a wide variety of uses:

- Highways & Expressways
- City & State Roads
- Rural Roads
- Hill Roads, High Altitude Roads
- Unpaved Roads
- Forest Roads
- Helipads, Airfields
Effectiveness of RBI Grade 81 with Different Types of Indian Soils

(All results are with 4% RBI Grade 81)

<table>
<thead>
<tr>
<th>Untreated (UT) Treated (T)</th>
<th>Type of Soil</th>
<th>CBR %</th>
<th>UCS, kg/sqcm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CRR I</td>
<td>IITKgp</td>
</tr>
<tr>
<td>UT</td>
<td>Clay</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>T with RBI</td>
<td>Clay</td>
<td>25</td>
<td>18</td>
</tr>
<tr>
<td>UT</td>
<td>Silt</td>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td>T with RBI</td>
<td>Silt</td>
<td>98</td>
<td>-</td>
</tr>
<tr>
<td>UT</td>
<td>Sand</td>
<td>22</td>
<td>-</td>
</tr>
<tr>
<td>T with RBI</td>
<td>Sand</td>
<td>53</td>
<td>-</td>
</tr>
<tr>
<td>UT</td>
<td>Grave l</td>
<td>30</td>
<td>-</td>
</tr>
<tr>
<td>T with RBI</td>
<td>Grave l</td>
<td>197</td>
<td>-</td>
</tr>
</tbody>
</table>
Effectiveness of RBI Grade 81 with Different Types of Indian Soils

(All results are with 4% RBI Grade 81)

<table>
<thead>
<tr>
<th>Untreated (UT) Treated (T)</th>
<th>Type of Soil</th>
<th>PI (Plasticity Index) (%)</th>
<th>FSI (Free Swell Index) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sample 1</td>
<td>Sample 2</td>
</tr>
<tr>
<td>UT</td>
<td>Clay</td>
<td>18</td>
<td>11.5</td>
</tr>
<tr>
<td>T with RBI</td>
<td>Clay</td>
<td>11.7</td>
<td>5.2</td>
</tr>
<tr>
<td>UT</td>
<td>Silt</td>
<td>10.3</td>
<td>11.6</td>
</tr>
<tr>
<td>T with RBI</td>
<td>Silt</td>
<td>5.4</td>
<td>6</td>
</tr>
</tbody>
</table>
Design Methodology

- For Traffic \geq 2 MSA, In Accordance with IRC:37-2012
- For Traffic \leq 2 MSA, In Accordance with IRC: SP:72-2015

<table>
<thead>
<tr>
<th>Traffic \geq 2 MSA IRC:37-2012</th>
<th>Traffic \leq 2 MSA IRC:SP:72-2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bituminous Layers</td>
<td>Bituminous Surfacing</td>
</tr>
<tr>
<td>As per fatigue models provided in the document in conformation with strength, durability & toxicology parameters</td>
<td>As per conventional provision</td>
</tr>
<tr>
<td>Base Layers</td>
<td>Base & Sub Base Layer</td>
</tr>
<tr>
<td>Base & Sub Base Layer</td>
<td>Design on Modulus & Depth equivalency factor in conformation with strength, durability & toxicology parameters</td>
</tr>
<tr>
<td>Sub Base Layers</td>
<td>Modified & Untreated Sub Grade</td>
</tr>
<tr>
<td>As per conventional provision</td>
<td>As per conventional provision</td>
</tr>
</tbody>
</table>
Crust Reduction as per IRC:37

- **Design Traffic**: 150 MSA
- **Design CBR**: 3%

<table>
<thead>
<tr>
<th>Conventional Design</th>
<th>Stabilized Pavement Design (RBI Grade-81)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 mm, BC</td>
<td>50 mm, BC</td>
</tr>
<tr>
<td>170 mm, DBM</td>
<td>50 mm, DBM</td>
</tr>
<tr>
<td>250 mm, WMM</td>
<td>230mm Stabilised Base</td>
</tr>
<tr>
<td>380 mm, GSB</td>
<td>250mm Stabilised Sub-Base</td>
</tr>
<tr>
<td>Total Thickness 850 mm</td>
<td>Total Thickness 580 mm</td>
</tr>
</tbody>
</table>

- **32% Savings**
Crust Reduction as per IRC:SP:72 (For Rural Road)

- Design Traffic: T7 Category
- Design CBR: 7%

<table>
<thead>
<tr>
<th>Conventional Design</th>
<th>Stabilized Pavement Design (RBI Grade-81)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 mm, PMC</td>
<td>20 mm, PMC</td>
</tr>
<tr>
<td>225 mm, WBM</td>
<td>150 mm, Stabilized Base</td>
</tr>
<tr>
<td>150 mm, GSB</td>
<td>100 mm, GSB</td>
</tr>
</tbody>
</table>

- **Savings**: 33.33%
- Total Thickness: 375 mm
- Total Thickness: 250 mm
Construction Process

1. In-Situ Stabilization Process
2. Material Spreading
3. Grading & Profiling
4. Stabilization as per designed Combinations
5. Compaction
6. Curing
Construction Process

Dumping

Leveling
Construction Process

Spreading RBI Grade-81

Placing of Bags
Construction Process

Mixing

Profiling
Construction Process

• In-Situ mixing (with Stabilization Machine)
CONSTRUCTION PROCESS: Plant Mixing & Laying

WMM Plant Calibration with RBI Grade-81
Construction Process

Production of RBI-81 & Aggregate Mix for Base Layer
Construction Process

Laying of Mix By WMM Paver on GSB Layer
Construction Process

Compaction
RBI Grade-81 in India

RBI Grade-81 has been used to complete projects in over 20 States in India, covering Desert, Hilly, High Rainfall & Snow-Bound Areas

- Jammu & Srinagar
- Rajasthan
- Uttar Pradesh
- Karnataka
- Tamil Nadu
- Andhra Pradesh
- Haryana
- Manipur
- Mizoram
- Meghalaya
- Arunachal Pradesh
- West Bengal
- Uttarakhand
- Gujarat
- Punjab
- Maharashtra
- Himachal Pradesh
- Orissa
- Tripura
- Assam
Approval by the Ministry of Road Transport & Highways

OFFICE MEMORANDUM

Subject: Use of emerging new materials and techniques in construction of National Highways.

In continuation of SR&T (Roads) Zone’s OM of even number dated 08.10.2013, the minutes of the meeting of Coordination Committee dated 22nd May, 2014 in respect of newly accredited materials/techniques such as Instant road repair cold mix compound – INSSTAPATTCH, Anti stripping additive (Zycosoil) & water proofing compounds – Terrasil, Terraprime and IPPL SS –IX – Soil Stabilizer, containing merits and demerits were circulated to all project zones vide SR&T (Roads) Zone letter of even number dated 30th May, 2014 with the request to incorporate and utilize considering their suitability in different States on trial basis. The list of new accredited materials/techniques, as on date, is as below:

(i) Geocells,
(ii) Warm Mix Asphalt Technology,
(iii) Water Proofing Membranes,
(iv) Non-woven, Woven Geotextiles & Techglass,
(v) Jarofix,
(vi) Thiopave – Asphalt Modifier,
(vii) Infrared Recycling Pothole Repair System,
(viii) Water proofing for Bridge decks and pavements,
(ix) Copper Slag,
(x) Processed Steel Slag Aggregates,
(xi) Roadstabil Technology,
(xii) Evercrete Deep Penetrating Sealer,
(xiii) RBI Grade-81,
(xiv) Tenax 3D Grids and
(xv) Roadcement
(xvi) Instant road repair cold mix compound – INSSTAPATTCH
(xvii) Anti stripping additive (Zycosoil) and water proofing compounds – Terrasil, Terraprime
(xviii) IPPL SS –IX – Soil Stabilizer

2. It is requested that the status of utilization of the new materials/techniques along with performance feedback, if any, may be provided to SR&T (Roads) Zone for necessary action. The specific use and suitability of the new materials/techniques is enclosed at Annex-I.

Enclosure: Annex-I

Assistant Executive Engineer (R) (S, R&T)
For Director General (Road Development) & SS

[Guilshan]
Dr. B.P. Chandrasekhar
Director (Technical)
☎: 41055550
☎: 41000475
✉: bpc@nic.in

No. D-10021/2/2007-Tech

To,

All Chief Engineers,
Nodal Department

Sub:- New Materials / Technologies accredited by IIRC.

Date: 08.09.2009

Sir,

Please find enclosed herewith a list of new materials / technologies suitable for use in rural road construction and accredited by Indian Road Congress, New Delhi.

You are requested to circulate the enclosed list to Project Implementation Units of your State with necessary instructions to prepare project proposals using any of the materials / technologies. As you are aware, all states were advised to take at least 2-3% of roads in the proposals with new materials / technologies, earlier also. Hope your state takes the advisory in a pro-active way while submitting the proposals in the coming phases.

Thanking you,

Yours sincerely,

(B.P. Chandrasekhar)
Director Technical
Approval by MES

RENEWAL OF PRODUCT APPROVAL

1. M/s Alchemist Touchnology Limited had approached this HQ for renewal of the products i.e., 'RBI Grade 81' for use in Defence Works.

2. Approval in terms of policy letter No 43285/CMPT/E2 (Des-2) dated 15 Apr 2008 is hereby accorded for use of above mentioned products in Defence Works for a period of Three year i.e., upto 25 Apr 2017.

3. Further continuation of the products will be decided thereafter, based on the mandatory feedback/performance report submitted by Zonal Chief Engineers. In case anyone using the product notices any defect/discrepancy, the same will be reported immediately without waiting for the expiry of the period of three years.

4. The approval does not absolve the executive/supervisory staff from their responsibility for using correct quality product. It is only after they are satisfied about the quality and the performance, the product will be used. Mandatory checks about the quality will be carried out as laid down and the records of the same maintained.

5. A brief of the products along with a copy of the literature is enclosed. Further specifications/details of the product like drawings, samples etc. can be obtained from the manufacturer at the address given below:

6. The firm is required to give feedback on sales/supply of approved items to MES Contractors/Formations/Units on six monthly basis as per format given below:

<table>
<thead>
<tr>
<th>S No</th>
<th>Name of Product</th>
<th>Supply to MES Contractor/Formation/Unit</th>
<th>Location/Station</th>
<th>Date of Supply</th>
<th>Quantity Supplied</th>
<th>Amount (Rs)</th>
<th>Supply Order No</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
<td>(f)</td>
<td>(g)</td>
<td>(h)</td>
<td>(i)</td>
</tr>
</tbody>
</table>

7. The firm is required to submit a minimum of 05 No performance reports from the MES as per the format given opposite, at the time of renewal, failing which their case will not be considered for renewal.

Address:
M/s Alchemist Touchnology Limited
Alchemist House, Building No 23, Nehru Place, New Delhi - 110019
Tel: +91-11-40600800
Fax: +91-11-40600888
E-mail: info.rbigrade81@alchemist.co.in
Website: www.rbigrade81.com

(Sandeep Rawat)
Brig
DDGW (Des) for E-in-C
A FEW PROJECTS COMPLETED IN INDIA
Construction of Nyoma Airfield using RBI Grade-81

- Altitude of about 13500 Ft.
- Temperature of -30° C to +30° C
- Design: One layer of 250 mm of Sub Grade stabilization with 4% RBI Grade 81
Landing Marks at Nyoma Airfield
Certificate from HQ 14 Corps

Brig Michael Mathews, VM
Chief Engineer
Tel MLI 2685 (O) / 2686 (R)
CIV 01982 - 254535
Mob 941977299
Email id: mike_hottaram@yahoo.com

14 May 2010

CERTIFICATE

This is to certify that the Sub-Grade of Runway at Nyoma Airfield, Ladakh (JK) was stabilized by RBI Grade 81. The length of ALG is 2750 M and width is 45 M. Total stabilized area is 1, 37,500 SQM up to a depth of 0.25 M. The quantity of RBI Grade 81 is about 2400 MT. Stabilization was completed in approx. 3 months. The work has been completed in a professional manner, to exacting specifications and well within the time frame projected. On stabilized surface, IAF did a successful landing & takeoff by AN-32 aircraft on 18th September, 2009 at 0625 hrs.

(Michael Mathews)
Brigadier
Chief Engineer
HQ 14 Corps
Shoulder Stabilization of Runway

RBI Grade-81 in Shoulders (Phalodi, Rajasthan)
Madurai- Thondi Road, Tamil Nadu (NH-230)
• Tested by – NIT Trichy
• Design Vetted by – IIT Madras
• Length 30 Km (Mar-15)
National Highway - Tumkur, Karnataka (NH-206)

- Strengthening of Existing Carriageway by Full Depth Reclamation i.e. 100% use of existing road material
- MOEF Project (May-12)
National Highway - 34, West Bengal

- Behrampur to Farakka (Pkg.3)
- West Bengal (Jan-15)
- Design Vetted by IIT Kharagpur
National Highway - 58

- Purkaji Bypass
- Near Roorkee (NH-58)
- Constructed in Apr-13
National Highway - NH-22, Kufri, H.P - PWD

Traffic: 70 MSA

Constructed in Nov-11

40 mm, BC

150 mm, Aggregate + 5% RBI-81

Existing Pavement
NATIONAL HIGHWAY

Traffic – 10 MSA

Hyderabad–Vijaywada, (NH-9)
RBI Grade-81 in Expressway

- RBI Grade-81 in Express Highway (Bengaluru – Mysore)
- Design Traffic 150 MSA
- RBI Grade-81 used below PQC Layer
National Highway - 94, Uttarakhand

Emergency construction during cloud burst in Uttarakhand
Emergency construction during cloud burst in Uttarakhand
State Highway - 48, Chitradurg, Karnataka

Before

After
State Highway - Kashipur-Thakurdwara, UK

- Traffic – 80 MSA
- 4 lane (Sep-13)
Rural Roads

- UDUMALAIPETH, Tamil Nadu
- Design Vetted by NIT Trichy
Rural Roads

- Construction Period: 2010
- Location: Davangere Taluk
Rural Roads

• Bemina - Durbal Rural Road, Srinagar
• Traffic 2 MSA, Tested by CRRI
Rural Roads

- CNN – Kolo Road, Hardoi
- Design Traffic ≤ 2 MSA (Apr-13)
- Tested By STA, UP RRDA
Rural Roads

- Bidar Bapur, Karnataka
- RBI Grade-81 as a base layer in Rigid Pavement (below CC layer)
Rural Roads

Ministry of environment and forest Rural Road Project

Before Construction

After Construction
RBI Grade-81 in Pathways/Walkways

Stabilized Soil Pathway with RBI Grade-81, Forest Area Bangalore (Karnataka)
RBI Grade-81 in Pathways/Walkways
Some International Applications

- Heavy traffic paved road – Israel
- Secondary paved roads - Kenya
- Main road into city of Kigali - Rwanda
- Access road to a construction site - Israel
- Access roads and drilling pad - Angola
- Township roads - South Africa
Road Building International (India) Pvt. Ltd.
The exclusive licensees for manufacturing & marketing RBI Grade-81 in India

• We are operating under the Make in India initiative.

• RBI Grade-81 has 10 years of existence in India with roads up to 8 years evaluated by CRRI (Durbar Hanjik & Chitradurga) & other National research Institutes.

• All raw materials are 100% indigenous and locally sourced.

• We undertake onsite training/supervision of contractors/engineers for execution of RBI Grade-81 work.
A State-of-the-Art Manufacturing unit near Jaipur producing 1500 Metric Tonnes of RBI Grade-81 per day.
Two more plants are coming up in Andhra Pradesh & Jharkhand shortly.
Thank You

Road Building International (India) Pvt. Ltd.
First Floor, 315/274, Westend Marg, MB Road,
Saidulajab, New Delhi -110030

Contact : +91-73 9992 9992
 +91-73 9998 9998
E-mail: info@rbi81.in
Website: www.rbi81.in